New Methods to Examine Formation and Properties of Interfacial Films in Sliding Contacts

Kathryn J. Wahl

Tribology Section
U.S. Naval Research Laboratory
Washington DC, USA

Lecture 19

Friday, July 30, 2004
NSF Summer Institute on Surface Engineering and Coatings
Northwestern University, Evanston IL
Acknowledgements

⇒ S. David Dvorak (University of Maine)
⇒ Tom Scharf (ASEE Post Doc ➔ Sandia NM)
⇒ Gun Lee (NRC Post Doc)
⇒ Irwin Singer (NRL)

⇒ S.A. Syed Asif (AFOSR Post Doc ➔ Hysitron Inc.)
⇒ Rich Colton (NRL)

⇒ Funding: Office of Naval Research/NRL; AFOSR
Motivation

• To understand and control lubrication, friction, and wear processes, we need to know what is happening \textit{in the contact} (chemistry, dynamics, mechanics....)

Approach

– develop tools, techniques to explore the buried interface
Approaches to studying buried interfaces

Ex Situ Analyses
- Optical Interferometry
- EDS
- AES
- XPS
- Raman

In Situ Triboscopy

“In Situ” Surface Analyses
- UHV: H_2S, O_2, SO_2
- AES
- XPS

In Situ Raman Tribometry
- Optical Microscope
- Raman Spectrometer

1. *In Situ* Raman Tribometry

Goal: Identify Third Bodies in Sliding Interface and Relate them to Friction and Wear Evolution

2. Scanning Nanomechanics
Third-body Effects in Sliding Contacts

Tribochemical build-up of third-body material
Sliding between layers of third-body material: Velocity Accommodation
Breakdown of transfer films: ejection of debris

Test Type: Reciprocal Sliding Load: 24 N
Counterface: Glass Hemisphere (R = 6.25 mm) Track Length: 6 mm / 4 mm
Sliding Speed: 1 mm/s Relative Humidity: 0% to 60%
Temperature: ≈ 24°C
Raman Tribometer System

Video and VCR

Focus and Positioning

Microscope and CCD Camera

Micro-Raman System

Reciprocating Stage
Examples: 5 Simple Questions

1. Can we correlate *chemistry* in the contact to friction?
2. What is the *thickness* of the interfacial films?
3. Where does sliding take place (*what interface*)?
4. Can we correlate *dynamics* in the contact to friction events?
5. What are the *mechanical properties* of the interfacial films?
Pb-Mo-S Coating Characteristics

Deposition Technique: Ion Beam Deposition (IBD)

Substrate: 35 nm TiN/M50 Steel Film Thickness: 320 nm

Film Structure: Amorphous (XRD, TEM, Raman)

Film Composition: 12% - 15% Pb

Wahl et al., *Wear* (1999)
Chemistry of Third Body

Raman Reference Spectra:

- Crystalline MoS$_2$ through glass
- Glass hemisphere
- Crystalline MoS$_2$
- As-deposited Pb-Mo-S Coating

Wave Number [cm$^{-1}$]

Cycle 0

To video or Raman microscope objective

Hemisphere

Coating

50 µm
Results Pb-Mo-S: Low Humidity Testing

Transfer Film Development

Cycle 80
Cycle 500
Cycle 870

Average Friction Coefficient

Cycles

Transfer Film Development
Tribochemical formation of third-body material

In situ Raman shows formation of MoS$_2$ during low-humidity sliding

Confirms ex situ Raman and HRTEM showing formation of crystalline MoS$_2$ during low-humidity sliding:

Wahl, Dunn, Singer
Wear 230 (1999) 175-183
5 Simple Questions:

1. Can we correlate chemistry in the contact to friction?
2. What is the thickness of the interfacial films?
3. Where does sliding take place (what interface?)
4. Can we correlate dynamics in the contact to friction events?
5. What are the mechanical properties of the interfacial films?
In situ measurement of transfer film thickness using Raman spectroscopy

- DLC coating exhibits a different Raman spectrum than its respective transfer films
- Consistent with shifts observed by *ex situ* Raman spectroscopy

Profilometry and Raman Across Transfer Films

Raman G-peak Intensity (a.u.)

Position (µm)

Transfer Film Thickness (µm)

Raman Shift (cm⁻¹)

Intensity (a.u.)
Model: *Ex Situ* Raman Intensity vs. Transfer Film Thickness

Applying Beer’s Law:

\[
I_f(\nu_f) = \int_0^t I_f(z, \nu_f) \, dz = I_\infty f(\nu_f)(1-e^{-2t/\lambda_f})
\]

\[
I_S(\nu_S) = \int_{R}^{\infty} I_S(z, \nu_S) \, dz = I_\infty S(\nu_S)(e^{-2t/\lambda_f})
\]

\(\lambda = \) optical mean free path (assume \(\lambda \neq \lambda (\nu)\))

\(I_\infty f, I_\infty S = \) Raman intensity for thick layers

\(\lambda << t_\infty, R\)

\(\nu_f, \nu_S = \) frequency (usually at a peak value)

assume normal incidence (\(\alpha = 90^\circ\))
Raman Mean Free Paths for Transfer Films

<table>
<thead>
<tr>
<th>Profiles</th>
<th>λ_f (nm)</th>
<th>±</th>
<th>λ_f (nm)</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Air</td>
<td></td>
<td>Ambient Air</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>490 22</td>
<td></td>
<td>536 32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>476 18</td>
<td></td>
<td>496 24</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td></td>
<td>510 26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>502 24</td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Mean±S.D.</td>
<td>489 13</td>
<td></td>
<td>514 20</td>
<td></td>
</tr>
<tr>
<td>Coating</td>
<td>245±26 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The thickness of the transfer film can be calculated from $I(\nu)$ once $I_\infty f$, $I_\infty C$ and λ_f are known.
In situ measurement of transfer film thickness

How thick is the transfer film?

$I(\nu) = I_\infty^f(\nu)(1-e^{-2t/\lambda f}) + I_\infty^c(\nu)(e^{-2t/\lambda f})$

Convert intensities to thickness:

$t(\nu) = \left(\frac{\lambda f}{2}\right) \ln \left[\frac{I_\infty^C(\nu) - I_\infty^f(\nu)}{I_m^f(\nu) - I_\infty^f(\nu)} \right]$
Use Newton’s Rings to monitor third body thickness

- Fast building of thick third body transfer film of Ti-Mo-S coatings in ambient condition

Gun Lee
5 Simple Questions:

1. Can we correlate *chemistry* in the contact to friction?
2. What is the *thickness* of the interfacial films?
3. Where does sliding take place (*what interface*?)
4. Can we correlate *dynamics* in the contact to friction events?
5. What are the *mechanical properties* of the interfacial films?
Rheological Models for Velocity Accommodation in Thin Films

Applied Load

Intrafilm Flow

Thin Film

Interfacial Sliding

Sliding Velocity

Interfacial Sliding with Third Body

Godet, Wear, 100 (1984), 437-452

Berthier, Godet, Brendle, Trib. Trans. 32 (1989), 4, 490-496
DLC vs. Sapphire Friction Behavior: Run-in

Transfer Film Formation

Cycle 0

Cycle 8 $\mu=0.065$

Dry (3%RH) Air
Low (0.7 GPa) Stress

Contact region

Wear Track

Sliding

50 μm
Steady-State Friction

- Cycle 1300 $\mu=0.035$
- Cycle 1605 $\mu=0.036$

- Ambient (45%RH) Air
- High (1.1 GPa) Stress

“Thick” transfer film

Center of transfer film thins

100 μm
Friction Spiking - Ambient Air

3 examples of transfer film depletion and recovery

Ambient Air
High Stress
(Continued)

Cycle 1674
\(\mu = 0.046 \)

Cycle 1730
\(\mu = 0.038 \)

Cycle 1798
\(\mu = 0.044 \)

Cycle 1925
\(\mu = 0.039 \)

Cycle 1938
\(\mu = 0.071 \)

Cycle 2000
\(\mu = 0.047 \)

[Graph showing friction variation over cycles with images of samples at different cycles]
3rd body thickness and friction - *in situ results*

Steady-state friction
- controlled by interfacial sliding
- lost when transfer film thins and first body counterface makes contact w/coating surface

High friction sliding
- Combination of interfacial sliding & shearing, detachment, and/or recirculation of the third bodies

Scharf and Singer (Trib. Letts., 2003)

![Graph showing friction versus sliding cycles for DLC vs sapphire](image)
Third body dynamics and friction

In Pb-Mo-S coating, we see no motion
In transfer film for low humidity sliding

Dvorak, Wahl, Singer
Third Body Motion During Humidity Transition

Typical Contact Area

- Compacted Debris
- Moving Material
- Stationary Material

200 microns
Observed Velocity Accommodation Modes

Interfacial Sliding with Third Body

Shear / Extrusion of Third Body Material
Third Body Motion During Humidity Transition

From video, we can measure the shear/extrusion velocities of third bodies.
Viscoplastic behavior of Pb-Mo-S thirdbody transfer film

Shear stress = \(\frac{\text{lateral force}}{\text{contact area}} \)

\[\tau = \frac{F_L}{\pi a^2} \]

Strain rate = \(\frac{\text{extrusion velocity}}{\text{film thickness}} \)

\[\dot{\gamma} = \frac{v_x}{\Delta z} \]

- Area of contact is measured using \textit{in situ} image data
- Film thickness is measured from \textit{in situ} interferometry (Newton’s rings)
- Shear/extrusion velocities are measured using video playback
Viscoplastic Response of Transfer Film

\[\tau = \tau_0 + k(\dot{\gamma}) \]

\(\tau_0 \sim 20 \text{ MPa} \)
5 Simple Questions:

1. Can we correlate chemistry in the contact to friction?
2. What is the thickness of the interfacial films?
3. Where does sliding take place (what interface?)
4. Can we correlate dynamics in the contact to friction events?
5. What are the mechanical properties of the interfacial films?
Scanning Nanomechanics

Nanomechanics of Worn Surfaces (tracks, balls)

Indentations on the wear track and transfer material

Load-displacement curves

Gun Lee
Indentation procedures for transfer film

100 µm

In situ image

Indentation map/plan

35 µm

(II)

(IV)

(I)

(III)

(V)

20 µm

Scanned image

Indentation

Measuring film thickness
Transfer film thickness

(I) = 380 nm
(II) = 250 nm
(III) = 400 nm
(IV) = 500 nm
(V) = 150 nm

(h/t = ~ 0.1)
Summary

In Situ Raman tribometry can explore friction changes and quantitatively monitor transfer film health and thickness in solid lubricants:

- Low friction (at low humidity) determined by interfacial shear strength
 - Velocity accommodation through *interfacial sliding*
 - Low friction correlated with stable third body and chemistry

Friction transitions (spikes)
 - Correlated to loss of transfer film
 - *In situ* measurement of transfer film thickness enables prediction of high friction events, failure
Conclusions – cont.

High friction (at high humidity) determined by increasing interfacial shear strength

- Velocity accommodation through both interfacial sliding and shear/extrusion of transfer film
- Dynamics are complex but modelable (know shear strength, thickness, strain rate)

In progress: Mechanics of transformed interfaces
"Tribo" Materials Research Paradigm

- Processing
- Characterization
- Performance
- Tribotesting

Thin film analysis
Characterization
modeling

In contact synthesis

Optical Microscope
Raman Spectrometer

$f(x,t)$